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In this paper we investigate new boundary conditions for the incom-
pressible, tirhe-dependent Navier-Stokes equation. Especially inflow
and outflow conditions are considered. The equations are linearized
around a constant flow, so that we can use Laplace—Fourier technique
to investigate the strength of boundary layers at open boundaries. Such
layers are unphysical, and new boundary conditions are proposed so
that these boundary layers are suppressed. We also show that the
baundary conditions we propose do not produce divergence. Further-
more, they give solutions that do not grow in time, as long as the
forcing function in the system rices not. We also disguss the numerical
weatment of boundaries when fourth-order accurate finite difference
operators are used to approximate spatial derivatives. Using higher
order methods introduces eigensolutions with boundary layer thickness
of the same order of magnitude as the grid size. These eigensolutions
have to be suppressed in order to not destroy the fourth-order accuracy
of the method. Numerical results for the non-linear Navier-Stokes
equation, together with the new boundary conditions, are presented.
These calculations confirm that the results for the linearized problem
hold for the non-linear problem as well.  © 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we investigate boundary conditions for the
Navier-Stokes equation for incompressible fluid flow. In
numerical calculations one often makes the calculation
domain smaller than the physical domain in consideration
by introducing open boundaries, ie., inflow and outflow.
For physical boundaries, such as solid wall and free surface,
one can use physical arguments to derive boundary condi-
tions. As open boundaries do not exist in reality, there is no
direct physical argument for deriving boundary conditions
for such boundaries.

It is well known that the solution of the Navier—Stokes
equation can contain boundary layers. This is a true physi-
cal phenomenon when the boundary in consideration is, for
instance, a solid wall. However, we will in this paper see that
the solution can also contain boundary layers at open
boundaries. Such layers are unphysical. However, when
using numerical methods we must resolve them by making
grid refinements near the boundaries, the boundary layers
will otherwise cause wiggles, We should therefore define cur
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boundary conditions in such a way that the boundary layers
do not occur at all at open boundaries. The use of this
criterion to construct boundary conditions for open
boundaries was introduced in [27. The general way to
suppress the boundary layers is to let a normal derivative of
a high order of some independent variables be zero at the
boundary.

In this paper we construct new boundary conditions for
inflow and outflow. These conditions suppress boundary
layers effectively.

We model an inflow or outflow boundary by linearizing
the incompressible Navier-Stokes equation around a
constant flow. The so derived equation is solved analytically
by Laplace-Fourier technique. For small viscosity the
fundamental solution is shown to contain very different
length scales. We identify the boundary layer part of the
solution as the eigensolution to which the shortest length
scale belong. We propose new, previously unknown,
boundary conditions such that

(i) the boundary layer part of the fundamental
solution is effectively suppressed.

Two more requirements on the boundary conditions are
imposed, namely, they must be chosen so that

{ii) the solution does not grow in time, if the forcing
function does not, and

{ili) no divergence that can spread far into the domain
is produced at the boundary.

Letting u be the velocity component normal and v the
component tangential to the boundary x = 0, we suggest the
inflow boundary conditions

u
r uo
axvr (O, y, 1y=| vy | (3 1) r=0orlor2 (I)
0
uy+v,

where #; and v}, are given inflow profiles. These conditions
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fulfill the three requirements above. For the choice v =0,
the inflow boundary layer will be weaker, the larger » we
use. However, if r 2 3 the selution will grow in time, even if
the forcing function does not. We recommend using r = 2.

If the last condition is not properly fulfilled, so that
u.+v,=d(p, rj#0 at x=0, the divergence d, will be
convected far into the domain, We also point out that the
boundary condition for the solid wall and the slip condition
are special cases of the inflow condition (1).

We suggest the outflow boundary conditions

du
o 0
I )0, p, )= O | (3 1) (2)
ax9 Po
P

These conditions fulfill the three requirements above as well.
The higher values of j and g we use, the weaker the outflow
boundary layer will be.

The choice j = g + 1 will give a solution that is divergence-
free. However, if j # ¢ + | and if the viscosity v is small, the
divergence will be confined to the outflow boundary layer.
This layer will be weak if we choose j and ¢ large. Hence, in
this case the requirement j = g + 1 is not very important, as
long as j and q are large enough. Compare this to the inflow
case where it is very important to have the condition
u, +uv,=0 fulfilled at the boundary. We recommend using
Jj=3and g =2. In case the viscosity is small, we can also use
j=2andg=2

The generalization of the boundary conditions above to
three dimensions is straightforward. At each boundary we
will need one more condition, and this is formed by treating
the third velocity component in the same way as we treat v.

The concept of well-posedness is very important in
numerical analysis for partial differential equations [2-6]-
Well-posedness means that small disturbances cannot grow
arbitrarily fast in time. As numerical methods always intro-
duce small disturbances, we cannot solve ill-posed problems
with numerical methods if no extra smoothing conditions
are imposed to the problem. In [2-4] it is shown that the
boundary conditions (1) and (2) are such that the problem
derived by linearization around in arbitrary, smooth flow is
well-posed in the generalized sense.

The rest of this paper is arranged as follows. In Section 2
we define the model problem for open boundaries. In
Section 3 we discuss the solution of this problem via taking
the Laplace transform in time and the Fourier transform
in space. We derive the fundamental solution on the
Laplace-Fourier transform side. The inverse transform is
discussed and we give a theorem saying that if the solution
on the Laplace-Fourier transform side has a pole at s=3s,,
then the solution on the time-space side will grow in time
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as e¢®=6» This is of great importance, as the boundary
condition can introduce such poles.

In Section 4 we discuss boundary layers. It is shown that
the fundamental solution can have two very different length
scales, and we identify the boundary layer part as the eigen-
solution to which the shortest length scale belongs. In terms
of the arbitrary constants in the fundamental solution we
give criteria for when the boundary layers are weak. We also
show how boundary layers on the Laplace-Fourier trans-
form side correspond to boundary layers on the time-space
side.

In Section 5 we apply the boundary conditions (1) and
{2) to the fundamental solution and determine the integra-
tion constants. We show that prescribing a derivative of
high order will suppress the boundary layers efficiently.
We also discuss the divergence and the growth rate of the
solution.

In Section 6 we present fourth-order accurate numerical
solutions of the time-dependent, non-linear Navier-Stokes
equation in a two-dimensional straight channel. The bound-
ary layers predicted by the linear model problem is shown
to occur in the solution of the non-linear problem as well.
Furthermore, giving derivatives of high order as boundary
condition give rise to weak boundary layers also in the
non-linear case.

In Section & we also discuss the use of fourth-order
accurate finite difference methods for the numerical solution
of initial-boundary value problems. The use of fourth-order
finite difference approximations of spatial derivatives intro-
duces numerical boundary layers with the same thickness as
the grid size. In order to obtain the fourth-order accuracy,
these numerical boundary layers has to be suppressed. The
high order method will also require extra numerical bound-
ary conditions in order to be well defined. By a simple model
problem we show a technique to define the extra boundary
condition in such a way that the numerical boundary layers
are suppressed. We use this technique to define the extra
boundary conditions for the fourth-order approximation of
the non-linear Navier-Stokes equation.

2. A MODEL PROBLEM FOR OPEN BOUNDARIES:
THE LINEARIZATION ARQUND
A CONSTANT FLOW

The pressure formulation of the incompressible
Navier-Stokes equation is

uy e, — v, — v, + p=0 (3.a)

v+ U vy, -l v, t+ plL=0 (3.b)

Pt P+ ul + 200, + 0,7 =0. (3.c)

Here the restriction to two space dimensions is no real
restriction, as we could treat the z-direction in the same way
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as we will treat the y-direction. The last equation is derived
by taking the x-derivative of the first equation, adding the
y-derivative of the second and using the incompressibility
condition ¥, + v, = 0.

Linecarizing (3) around a constant flow in the domain
0€x<o0, 0K v 2n, 051 < oo, yields

u + Un + Vi, — vy —vu  + p. =0,

Ogx<mw, 0<ygL2n, 0<<a, (4.2)

v,+Us .+ Vo, —vo,. —vw, +p, =0,

Osx<o, 0y=2n, 0sr<oo, (4.b)

Pt P=0, 0€x<oo, 05y, O0<r<mw. (4c)

We apply boundary conditions at x=0 and require the
solution to be 2zn-periodic in the y-direction. The boundary
condition at x =0 will be written as

2
B(3/éx, 3fay, /o) [ v | = g(, 1),
P
x=0, 0<y<2n, 0<I<o0. (4.4)

B is a differential operator with constant coefficients. B can
be, for instance, 1 (Dirichlet condition) or d/6x (Neumann
condition ). We consider a simple class of forcing functions
g and for simplicity demand that all the derivatives
a9 D /Ay 91 exist and that g and all its derivatives
vanish identically at =0 and for ¢ 2 T,,(g). Furthermore,
we demand that

2
j’ gl ) dy=0, 120
0

The solution must vanish at x = 0, and as a side condition
we demand

(=}
[ e ut, , DI+ o, -, 01
¢

+ipl - Oy di<oo,  n>n, {4.)

for some n, e R. Here ||A(-, -, r)|| is the L,-norm of A, that is,
(4 -~ NP =& [&7 h* dy dx.
Equation (4.e) can be considered as a boundary condi-
tion at x = co. The reason that we use the condition (4.¢)
u
and not, for instance, (U) — 0 as x — o0, is that if we use
P
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(4.€) as the side condition we can use Parseval’s relation to
derive a side condition for the Laplace-Fourier transform

U U
of(v). We let (b) vanish at t =0, e,
P 4

U
v |(xy0)=0
P

O€£x<oo, 0<y<2r (41)

The half space probiem (4) contains one boundary,
namely x = 0. If I/ > 0 the boundary x = 0 is an inflow
boundary, if UV < O the boundary x = 0is an outflow boundary,
and if U=0 the boundary x=0 is a boundary through
which no fluid passes. Hence, by choosing U/ > 0, U <{), and
U=0 we will use the model problem (4) to investigate
boundary conditions for inflow, outflow, and solid wall.

3. SOLUTION VIA THE LAPLACE-FOURIER
TRANSFORM

3.1. The Fundamental Solution

We start with defining some notations. For a function
h=h(x, y, t}, for Real(s) =1 =n, and for w € Z, define

, 1

2n poo
i, @, 5)= 5= L L e~ e~ ¥h(x, v, 1) dt dy

(the Laplace-Fourier transform)

and

e"e"™ hix, w, 5) ds

1 H+ foe X
ey == " %

Tl vp—im o o

(the inverse Laplace—Fourier transform).

Taking the Laplace-Fourier transform of the problem (4)
yields

s+ Uit +ioVi—vi, +voli+ p. =0,

Ox<o0n, wel, (5.a)

st 4+ Ub, + iwVi—vi ., + v + iwp =0,
0g£x<w, welZ, (5.b)
Pa—wPp=0, 0<x<w, welZ (5.¢)

i

B(d/ox, iw, 5}] § | = g{w, 5), x=0, weZ, (5d)

| a4 1+ 18, - n i)
10, s+ dE<0, n>n,  (5e)
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From the definition of the Laplace-Fourier transform and
the properties of g we obtain

aq2+q}g(y’ f) 1 7e—Real(A')Tu
92936 < '
|ew#sTg (o, 5)| 0;“)?;% 3y g Real(s)
0Krg 7o
1 _efkealts)ﬂj
— Kz, 0, —_ )
(& a1, 92) Real(s) (>

that is, the Laplace—Fourier transform of g decays fast as

|w| = oo or |s| — oo, Real(s)=n,, any y,€ R. Note that

£(0, s)=0, which for the boundary conditions we will
i

consider will lead to (U) {x,0,5)=0. From here on we
p

therefore only consider we Z\{0}.

The fundamental solution of (5.a)—(5.c), together with the
side condition (5.e), is

ol

i w

B )l=a- —i e lmlx

b —s+ U |w|—iwV
B w
1 0

ta, [0 a1 ] e (6)

0 0

for Real(s)> —vw® and s# U |w| —iwV, and

|
i o, 2v lw|+ U
i l=a, | e +a, x- —iw cellr T
5] \a, v ol + U

0

for Real(s) > —vw” and s = U |w| — i V. Here

K= |o!

U Ut s+ion\\?
K2=_ﬁ'+ "E"'w + .
4y v

(8.a)

2 (8b)

With the root we mean the branch with positive real part,
ie., Real(z?) 20, and hence Real(x,) > 0. a,, «,, and «, in
{6)and a,,, «,, and , in (7) are arbitrary constants that will
be determined by the boundary condition (5.d).

Before we specify and apply the boundary condition
(5.d), we will in Section 3.2 and Section 4 discuss the
solution on the time-space side. We will in general terms
discuss the growth rate in time and the boundary layers.
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3.2. The Inverse Laplace—Fourier Transform
and the Growth Rate in Time
i
If the solution (ﬁ) is analytic for Real(s) = 5, and if for
p
all integers g, 20, ¢,20, and ¢,20 and for all s with
Real(s) = n, we have

=

&l
Yrady
wrs pyer

T

(x, a, S) ‘<- K(Qla 421 q3= Uo)s

=N

where K is independent of w and s, then all the x-, y-, and
t-derivatives of the inverse Laplace—Fourier transform exist
and can be found by taking these derivatives inside the
integral and the sum in the inverse transform formula.
Furthermore, by the inverse Laplace—Fourier transform
formula we easily obtain

u
v | (x, p, t)| <K -e™,
P

However, we will see in the next lemma that if the solution
on the Laplace transform side has a pole of order one at
s=s5,, then the solution on the time side will grow as
e®*l%) This means that if the boundary condition {5.d)
allows solutions with a pole with Real(s,)>0, then the
solution on the time side will grow exponentially in time.

_ LEmMa 3.1 Let h be the Laplace transform of h. Let
h = h(s) be analytic for Real(s)=#n,. Let

(L+1s])-1h(s)| <K, Real(s)=no
Jor some K. Let Real(s,)=n,>n,. Then, for any integer
g = 1, the inverse Laplace transform of h(s)/{(s—s,) is

h(s,)-e - (1400 9)).

Outline of the Proof. Calculating the inverse Laplace
transform along the line Real(s)=#,+: ' and using
residue calculus proves the lemma. For more details,

see [2]. 1}

4. LENGTH SCALES AND THE EXISTENCE
OF BOUNDARY LAYERS

4.1. General Discussion

We will now see how a boundary layer in the Laplace-
Fourier transform of a function corresponds to a boundary
layer in the function itsell. Let A= h(x, y, tr). There are
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several ways to defing the boundary layer thickness €. One
is to use a weighted L,-norm and define

_{gen ™ laG, - nl2 dr
T [ e A0, -, ) F de

This definition of the boundary layer thickness was first
introduced in [2] and is very useful when using the
Laplace-Fourier transform. Indeed, by (6) we see that the
fundamental solution of the problem (5) takes the form

hix, o, s)=o(w, 5)-e =t Real{x) >0,

where Real{x) increases as |w|, |Im(s} or Real{s)=0
increases. By Parseval’s relation we obtain

e o |2(@, 8)1*/(2Real(x(w, 5))) d&
170 2o o |, )7 dE |

s=n+ik,

oL

=g, (%)
Therefore, if Real{x) is large for all values of w and & for
which « is large, then the boundary layer thickness is small.
On the other hand, if Real(x) is small, then the boundary
layer thickness is large.

4.2. Boundary Layers in the Fundamental Solution

The expression (9}, together with the fundamental solu-
tion (6), can be used to investigate how to avoid boundary
layers in the solution of (4). Equation (6) shows the exist-
ence of two length scales in the x-direction, namely 1/]w|
and 1/Real(x,). The root k,, corresponding to the length
scale 1/Real(x,), can obtain very different values, and we
will now discuss this.

Inflow

In order to study inflow we consider the case />0 and
for simplicity let "= 0. By (5.f) the forcing function g decays
very fast for large w and s. If this holds true also for the coef-
ficients «,, o, and =, the solution on the time-space side
will essentially be determined by the expression (6) for small
(] and |s]. 1t is therefore of interest to consider the case

U 2
vE—, v & —.
|l Is]
From (8.b} we obtain
v v dvin? 4y 12
Real(x2)=Real(—5+$(1+—U—Z+F) )
2 22
_n yet WT—g) s
—U+ U +___U3 + O(v7),
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where s=1# + i£. If g( », t) contains rather high frequencies
in y (for instance, a step which is slightly smeothed out}, but
varies slowly in time, ¢ will decay faster with increasing |s|
than with increasing |w|. It is therefore relevant to consider
|s]/U < |ew)|. This yields

2 2 2
o ven (g —w7)
Real(K2)~ U+ U + U3
" 4
< U—le + U = |w).
Hence, Real(x,) < |w|. Therefore,
lol
w
L —i e lelx
—s+ U |w|—ioV
W

can be interpreted as the boundary layer part of the
fundamental solution (6). If we could make a, =0, the
boundary layer would be completely eliminated. In
Section § we will propose boundary conditions such that «,
becomes smail compared to «, and «,. This means that we
make the boundary layers weak. Hence, we have:

Inflow criterion for weak boundary layers. The
inflow boundary layers in the fundamental solution
(6) are weak if «, is small compared to «x, and a,,.

Quiflow

In order to study outflow we consider the case U <.
From (8.b) we derive

Real{x,) > max {L?, %4— Icuf}.

As in the inflow case we consider
v < (Ul

and we obtain Real{x,} > |U|/v » |o]. Hence, in the outflow
case it is

1 0
o, |0 e ™ 4a, | 1] -7
0 0

that can be interpreted as the boundary layer part of
the fundamental solution (6). In Section 5 we will give
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boundary conditions that make , and «, small compared
to o,, which means that we make the boundary layers weak.
In the outflow case we have:

Cutflow criterion for weak boundary layers. The
outflow boundary layers in the fundamental solu-
tion (6) are weak if «, and «, are small compared
to «;.

5. APPLICATION OF BOUNDARY CONDITIONS
AND THE SUPPRESSION OF
THE BOUNDARY LAYERS

In this section we will apply boundary conditions for the
inflow and the outflow cases. We will also see-that solid wall
and free surface conditions are special cases of inflow condi-
tions. Both classical and new boundary conditions will be
considered. We will investigate the strength of the boundary
layers induced by the different boundary conditions, We will
see that the new conditions result in weaker boundary layers
than the classical ones. We need three boundary conditions,
as we have three free parameters in the fundamental
solution, namely o, «,, and «,.

5.1. Inflow

The Boundary Condition

As inflow boundary conditions we propose to prescribe
values for v and &v/0x" and to let u, + v, =0. However, in
order to seec how errors in the boundary condition influence
the solution, we let the divergence be non-zero at the
boundary. Hence, we prescribe

u
r Hy
d
— (O, pti={ vg {1 {1 1], r=0orlor2
dx
dy
u,.+v

x »

(10)

We will later prove that the higher value of r we choose,
the more the inflow boundary layer will be suppressed.
However, choosing r2 3 will give solutions that grow in
time, even if the forcing function does not. We recommend
using r=2.

Naughton, [6], proposed prescribing u, v, and u, at
x=0, ie, (10} with r=0. He used the energy method to
prove stability for this boundary condition. Naughton also
proposed prescribing values for v, u, and p+ yu, y 2 U/2,
and recommended using y= U, Hence, we recommend
using a higher order x-derivative than Naughton did.

The no-slip condition # = v =0 at x =0, together with the
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condition ¥, +v,=0 at x=90, can be found from (10} by
letting =0 and u, = vy = d, =0. Hence, the case r=0 can
also be used for the case of a solid wall. .

For r=1 and u, = v, = d, = 0 we obtain a boundary con-
dition which means that no fluid passes the boundary (u=0
at x =0) and that there is no shear stress at the boundary
(v, =0 at x =0). Hence, the case r =1 can also be used for
a free surface which is fixed at x=0.

The Solution on the Laplace-Fourier Transform Side

Applying the Laplace-Fourier transform of the boundary
condition (10) to the fundamental solution (6) and (7)
yields

i MKEH
i @
=_M _,',KEH Lo lwlx
K;Jrl—}wlﬁ']
P _”5+U'|w|-f‘UVK:+1
T
_w.|w|'
+1 s e Je M 2,
0
[
(_1)r+1 lwl - Jes]x
—_— -e
+1 +1
K57 —lof” 5+ U-|w] —iwV
—_——————i|w]
7
—iw
+| —xy | e iy
0
lwi
— N
o 2
jaj/w - il
+Ké+lfjw]’+l —i-Ka €
~5+ U |o| —iwV |
e %
P 2
]
T .
ce TR D dy
flwﬁ’ ’ II
(11)
0
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for Real(s)> —vw? and s # U |w| — iwV and

i
i ol i i rdy
5| = wr+l (r+ 1) —|ewl)y  iw(r+l) |.e-leix
b lal+ U{ iw 8, dy
rel (”“+(—le)’*‘+@
g fe%  d ) e ) e 12
+r+|(“°+(—|w|)'“+rm|)x e 1)

for Real(s) > —vw® and 5 = U |w| —iwV.

The solution defined by (11} and (12) is analytic at
s= U |w| —iwV. Indeed, from (8.b) we have k,=|w| + 4
for s =|w|U—iwV +k(2v |w| + U) + k*v. Continuity with
respect to s is proven by substituting this into (11) and by
letting k — 0. From Ahlors [1], Chap. 4, Section 3.1, it
follows that the solution is analytic at s = || U — iV

The Analyticity of the Solution

By Lemma 3.1 we know that if we have a pole in the
solution at s=us,, Real(s,}>0, it means that the inverse
Laplace-Fourier transformed solution will grow as Rt
even if the forcing function does not grow at ail. Therefore,
we do not accept boundary conditions that lead to solutions
with poles s, with Real(s,)>0. We have the following
theorem.

THEOREM 5.1,  Consider the solution (11), (12} to the
problem (5) with the boundary condition at x =0 taken to be
the Laplace-Fourier transform of (10). For 0<r<3 and
Uz 0 this solution is analytic for Real(s) = 0. Accordingly,
the inverse Laplace—Fourier transform will have no exponen-
tially growing solutions in time.

Proof. As il ¥y, and d are analytic for all 5, the only s
with Real(s) = 0 where the solution (11), (12) might not be
analytic are those s for which k3 ' = |@| "', that is,

Ky=lw| PN 0gmgr, 0<€r<3.
Together with (8.b) this implies that
5= _va(l _et'21r2m!(r+ 1)) + U iwll 'e£2rrm,"(r+l) _ IwV,

Osm<r, 0<r<3. (13)
All the s in (13) have negative real part, except
s=|w| U—iwV (which is attained for m =0). However, as
pointed out just after (12), the solution is analytic at
s=|w| U—iwV, which proves Theorem 5.1. |

239

Note that using r = 3 is bad in casc we have v <€ 1. This is
because two poles (m=1 and m=3) will approach the
imaginary axis when v — 0. The damping in the system
is then weak, and for more general spatial differential
operators than the one derived by linearizing around a con-
stant flow, or for the two-point boundary value problem,
the solution might grow, even if g does not, [2]. According
to the next theorem, the case r =4 will give solutions that
grow very fast in time.

THEOREM 5.2.  Consider the solution (11), (12) to the
problem (5) with the boundary conditions at x =0 taken to be
the Laplacian—Fourier transform of (10). Let r 2 4 and U > 0.
For large t the inverse transformed solution will grow as
exp(K(r) Utfv), where K> 0.

Proof. Letting m=1in (13) yields

Sp = —(J)ZV(I _ei2n2/(r+1)) + 4 ICU| _ex'er,‘n:r+l]ﬁ.!-c‘:)l/g

which together with (8.b) gives x, = |w] - """+ 1), Hence, if
Real(s,) > —vw?, then the solution (11) has a pole of order
one at s =5,. For

— Int U-Real(e’*"+ 1))
@w=Mts, Real(1 — g2+ 1)

we as r = 4 obtain

B Uz . (Real(eiZﬂ/(r+ 1)))2
T 4y Real{l — ¥+ ih

1 2 u?
=§cot2 (_1: )-—+0(1)>0-

Real(s,)

+O(l)

r+1 v

According to Lemma 3.1 this means that the solution on
the inverse transform side will approximately grow as
exp(s cot*(2m/(r + 1)) - (U?/v)1). The proof of Theorem 5.2
is complete. |

The Divergence
From (11), (12} we see that

K1X

0, +iob=dye”

Hence, we make the solution divergence free by letting
d,=0. Also note that if v < Uj|w| and if v < U?|s|, we
obtain k, = vw?®/U < |w|, according Section 4.2, Therefore,
if we let d,#0, the divergence will in this case not be
confined to the boundary.
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The Strength of the Boundary Layer

Again we have from Section 4.2 that if v < U/|w| and if
v< U?¥|s|, we obtain k,xvw?/U < |w|. The fundamental
solution will in this case contain a boundary layer. This
layer is weak if «, is small compared to o, and «,.

For simplicity let 5’0= 6o ="0. From (6) and (11) we see
that

r+1 r41

| R o Y ol S (14.a)
o, w U

o122 2| ey, i rg1 (14b)
o, w

We conclude that increasing » in (1), i.e., the order of the
x-derivative of v, results in weaker boundary layer at the
inflow.

5.2. Outflow
The Boundary Condition

As in the inflow case, we will try to avoid boundary
layers. From Section 4.2 we remember that in the outflow
case, small v makes |k, 2 {w|. This is the opposite situation
from the inflow case. In order to avoid boundary layers we
want the coefficients «, and «, to be small compared to «,.
This is done by prescribing an x-derivative of high order of
u and v to be zero. However, in order to see how errors in
the boundary condition influence the solution, we will here
let those derivatives be non-zero at the boundary. As the
third condition, we prescribe the pressure. Hence, give as
the boundary condition

&u

o i

2 | (0, p, t}=| 03 | (3. 1) (15)
ax” Po

4

We will later prove that the choice j= g + 1, together with
uf=wv?=0, will guarantee the solution to be divergence free
in the entire domain. Furthermore, the higher value of j and
g we choose, the more the outflow boundary layers will be
suppressed.

Naughton, [6], proposed two different boundary condi-
tions. The first was to prescribe u,., v, and p, and the second
was to prescribe w ., v, and p+yu—vu,, y= U/2. He
recommended using y = 0. We will later see that in the first
condition that Naughton used, the divergence does not
vanish. Furthermore, we will see that the outflow boundary
layers are not efficiently suppressed.
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We recommend using j=3 and ¢ =2 in (15). In case the
viscosity is small, we can also use j =2 and g = 2. Hence, as
in the inflow case we again recommend using a higher order
x-derivative than Naughton did.

The Solution on the Laplace-Fourier Transform Side

Applying the Laplace—Fourier transform of the boundary
condition (15) to the fundamental solution (6) and (7)
yields

=

—_gea )
8 - ( 32) 6’_'{213:'5
P 0
0
1 —K2XAY
3
(—r,)? 0
0
lol
&
b ® —i e~ el
s—=U-|o|+iwV
s—U-|w|+inV
€
_ ol (oY’
w \ Ky
+ ; leo\* T N LAy (16)
K2
0
for Real{(s) > —vw? and 5 # |@| U — iwlV and
J-Bo i
i Dvjol+ U (—lol)
i) = el 4 I s
b © 2vio|+ U (—io])?
Po
1
R - P B (17)
v |w| + U w
0

for Real(s)> —vw? and s = U || — iwV.

The solution (16), (17} is analytic at s = U |w| — iw V for
Real(s) > —vw? This is proven in the same way as for the
inflow case.
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The Analyticity of the Solution

THEOREM 5.3. Consider the solution (16), (17), valid for
Real(s) > —vw?, to the problem (5) with the boundary condi-
tion at x=10 taken to be the Laplace—Fourier transform of
(15). This solution is analytic for Real(s) > —vw’.

Proof. We have already seen that (16), (17) is analytic
at s= U |w| — iwV. Therefore, the only s with Real(s}>
—ve?, where the solution (16), (17) might not be analytic
are those s for which x,=0. By (8.b) we obtain x, =0 for
s= —vew? —iwV, and the theorem is proven. |

The Divergence
From [16) we see that

w® Py
s—Ulw| +ioV

i} i - B

(=)™ (=Ko

() -Ca) e

x| |— - — -e T,

Ky Ky

Hence, we make the solution divergence free by letting
i} = 0¢="0 and by choosing j = ¢ + 1, that is, by giving one
order higher x-derivative of u than of v.

If the requirement j =g + 1 is not fulfilled, the divergence
will not vanish. However, if Real(x,) » |w|, for instance if
v < |U|/|@|, then the divergence will be confined to a bound-
ary layer at the outflow boundary. In this case it is not very
important to have the requirement j= g + 1 fulfilled, as long
as we make the boundary layers weak by choosing j and g
large. This will be illustrated in Section 6.

ﬁx-f-icuﬁ:{

The Strength of the Boundary Layer

From Section 42 we remember that if v<|U|/|w] we
obtain Real(x,) » |ew|. The fundamental solution will in this
case contain a boundary layer. This layer is weak if «, and
o, are small compared to «,.

For simplicity let #)=¢=0. From (6) and (16) we
obtain

L2 ] TR (18.2)
o Ky

a, w|? .

2l==| <1, if g=1 (18.b)
a Ko

To suppress boundary layers we must choose j2 1 and
g = 1. The larger we choose j and g, the more the boundary
layers will be suppressed.

6, THE NUMERICAL SOLUTION OF
THE NON-LINEAR PROBLEM

In this section we show numerical results for the non-
lingar Navier-Stokes equation (3). It turns out that the
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sotid wall
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0 solid wali L

FIG. 1. The caleulation domain.

analytical results in Sections 2-3 concerning boundary layers
and divergence in the solution of the linearized equations
hold true for the non-linear equations as well. In Section 6
we use the notation w, v, p both for the solution of the
linearized equation and for the solution of the non-linear
equation, What is meant in every case will be clear from the
context.

6.1. The Numerical Method

We have written a code for solving the time-dependent,
incompressible, non-linear Navier-Stokes equation (3) in
O0<x<L, 0sy<gl, 0<r< o0, ie, a two-dimensional
straight channel. All the spatial dertvatives in (3.a), (3.b)
and the first-order derivatives in (3.c) are approximated by
the standard fourth-order central differences on a Cartesian
grid. This means that the differential operators ¢/dx, 8/0y,
and 2°/ox* + 8*/dy* are exchanged for finite difference
operators according to

d Ax?
___>D0.r 1_?D+XD—1

dx

a Ay?

5)—/—>D0y (I—fﬁ— DHD_J,)
52 2 Axl
—t—— . [——D
6x2+5y2 D+.\D—(( 12 +xD—x)

A 2
+D,,D_, (1-%1)”1)_},)_

Here D, ., D_., Dy, D, ,,D_, and D, are the forward,
backward, and central difference operators, e.g., D, u; ;=
Uiy~ )dx and Do, ;= ;o —u,;_,)/24y. The
Poisson equation (3.c) is solved by the fourth-order
FISHPACK routine SEPELIL. This routine solves the
separable Poisson eguation by a generalized cyclic reduc-
tion algorithm based on difference approximations [7].

As boundary conditions we apply (1) at x=0 and (2) at
x= L. At the solid walls we apply w=v=u, +v,=0. As the
spatial discretization is fourth-order accurate, we also need
extra boundary conditions to have the method well defined,
[2]. These extra conditions must be chosen in such a way
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that the fourth-order accuracy of the method is not
destroyed. How this is done will be discussed later.

As the initial condition we let u(x, y, 0)=u(0, y,0)
and uo(x, y,0}=p{x, y,0)=0. Denote the so-derived
approximation of the velocity (3)x; y;, t)by w; ;(¢)and the
vector consisting of the w, ;s in all gndpomts (1 J) by w
For the pressure we use the notations p, ,(¢) and p. The
method of lines approximation of {3) can then be written as

W, = {19.a)

(19.b)

F(w, p)
L(p)=G(w),

where F is the approximation of the convective and viscous
terms and of the pressure gradient in (3.a), (3.b), L is the
approximation of the Laplace operator in (3.c}, and G is the
approximation of the rest of (3.c). Equation (19} is a system
of differential algebraic equations (DAE). We solve it
by integrating in time with the fourth-order standard
Runge-Kuita method. The Poisson equation is solved in
every intermediate step, that is, four times for every
Runge—Kutta step. Hence, the system (19) is integrated by

k, :=At- F(w", p"), w i=w"+ 1k,
p, ==L (G(w,))
k,:=At-F(w,, py), w, i=w"+ 1k,,

P2 =L G(w,))
ky = At F(w,, pa2).
Py = L7HG(wy))
k, = At Flw,, py),

W3 :=W” + k3,

w'thi=w'+ 1 (k, + 2k, + 2k, + k),
pn+l ::L_!(G(W"+])).

The time step is chosen so that the fourth-order accurate
Cauchy problem

u+U DOx(I_V—D+xDﬁr)
A
+V-D0V( —Tyo D_ )

Ax?
=v<D_ . D_, I—-EDJM,D,X

A 2
+D+,,Dﬂ.(1 Zp,,D_ )}

is stable. The pressure gradient in the full equations acts as
lower order velocity terms, which we neglect. Taking the
discrete Fourier transform of the above equation yieids
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u,= Al,

A= —%sm( )(1 +§s1n (a/Z])

ﬁ% sin(f) (1 + % sinZ(ﬁfz))
- % sin’(a/2) (1 + % sinz(a/Z))

4y 1,
~ 5 sin’(8/2) (1 +3 sm2(ﬁ/2)),
where s =w Ax, f=w, Ay, —n<oa<n and —n<f<m

It is easily found that max, |sin{2)(1 + 2sin?(2/2))| =
1.372, ie, |Im(Ad) <1.372.(|U\/dx+ |V]/4y). Further-
more, —(16v/3)}(1/4x*+ 1/4y*) < Real(A)<0. Choosing
the time step such that

: At
)

ol vy . 16v / t
1.37 ieAdr——
372. (Ax A i-At 3 Ax2+
is in the stability region of the Runge—K utta method makes
the above fourth-order accurate Cauchy problem stable. We
therefore choose the time step for Eq. (19) to this value as

well. In the following we will in detail discuss how to choose
the extra boundary conditions.

The Numerical Treatment of the Boundaries

The numerical boundary conditions have to be accurate
enough to keep the fourth-order accuracy for all x [2].
In order to understand how boudaries should be treated
numerically when using a fourth-order spatial approxima-
tion we start by treating a simple model problem. Therefore,
consider the problem

H,=1,., Ogr<on, O€£x<oo, (20a)
u(x, 0)=0, 0gx<w, (20.b)
w(0,1)=g(t), 0=y (20.c)
.[m"ﬂ"’ (-, )P dt <00,  n>ne.  (20.d)

0
Consider the numerical approximation u;(¢) = u{(x;, t) on

the grid x,=h . jforj=—1,0,1,2, ..,

h2
u,=D,D_ (1—120+D) u,

where v, is defined by

Ogst<ew, j=1,2,3, ., (21.2)
u;(0}=0, j=—10,12, ., (21.b)
u()(t):g(t)’ Bljuo(t):os 0‘<-[! (2]C)
f e M u(Nidi<oo, >, (21d)
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where [u. ()3 =37 _, lu;(1)]* h. We note that as the
fourth-order accurate operator D, D _(I— (h3/12)D_. D )
is a five-point operator, we need two boundary conditions
at j=0. The first one, 1y(1) = g(1), is taken from (20.¢c). The
aim of the investigation that follows is to determine the
extra boundary condition Bu,{1)=0 in such a way that
{21) is a fourth-order accurate approximation of (20).

Before going further with the solution of (21} we will
prove a simple lemma that tells that if a methed is fourth-
order accurate on the time side, then it is fourth-order
accurate on the Laplace transform side.

LemMa 6.1.  Consider the functions
u=u(x,t), Ox<ow, O0gi<w
and
u;=u; (4, h), J=0,1,2 ., 0<r<ow, 0<h<h,

Let x;=h-j and assume that for some a€ R and for some
integer g = 1,

lulx, 1)) < f(x}- €™

and
ee(x;, £) —u;(e, Y| < h?-flx)- ™
Then
N o fx)) ¢ ,
Iu(xj,s)ruj(s, f'l)l[ <mh , Rcai(s)> &

Progf. The Laplace transforms are well defined for
Real(s) > o and

Um e (u(x,, 1) — (4, ) dt
0

— f( ‘)
Real(s)r | . AL — S L
<L € hq f('x_}) e dI Real(s) h -

For Real(s) > 0 the Laplace transform of the solution of
(20) is

#x, 5)=g(s)e V"7,

where the root sign means the branch with positive real
part. The fundamental solution of the Laplace transform of
{21} is (see [2] for details)

Bls)=a(s) et ols) e, (22a)

243

where

25 tj2y 172
e (3205

=5 {14 O(s*h")}, (22.b)
2. 733 sh Y12
.= - a1 ==
Ky hsmh ’:(24-2( 3) ) :’
=%sinh"(3“z) 14 O(sh?)}, {22.¢)

The indices t and f stand for true and false. Note that k,
approximates the correct value s'2 Furthermore, e % is
the parasite solution representing a boundary layer with the
thickness of the grid size 4. This part of the fundamental
solution (22.a) occurs because we use a fourth-order
accurate approximation in (21.a).

We will now show how the fourth-order accuracy on the
Laplace transform side can be investigated for our model
problem. If we in (22.a) had o, = § and a; =0 we, for every
fixed x; and fixed s, would have the error |#,(s) — @(x;, 5)| =
[ {exp(O(s®A*) -2 . x,)— 1} - §(s) e~V*" = O(h*). The
method would for every fixed s and x be fourth-order
accurate on the Laplace transform side. Hence, the role the
extra boundary ‘condition B.uy{t}=0 must play is to
eliminate the parasite solution a{s)-e~ "%

In order to illustrate how well different B eliminate the
parasite solution we will try three B/'s namely

D,D_u,=0<D_D_i,=0, (23.a)
DY¥D_uy=0<DYD ii,=0, (23.b)
and
Jug - -
E=D+D_u0¢su0:D+D_uU. {23.c)

From the fundamental solution (22.a), together with the
Laplace transform of the boundary condition (21.c), where
the extra condition is chosen to be (23.a), we obtain
&

sinh?(x, A4/2)

sinh2(xch/2)

g =
1—(-s3)”
I+ (1 —sh?/3)7

2= - O(sh?),

o=

- {1+ 0(shH)},

and the method is only second-order accurate on the
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Laplace transform side. Hence, using (23.a) as the extra
boundary condition in (21.¢) will, according to Lemma 6.1,
destroy the fourth-order accuracy.

A similar calculation shows that in both cases (23.b) and
(23.c) we obtain

ay=g {1+ 0(s*h")}
wy= g 0(5°hY)

and the relative error is O(sh*), so the approximation is, for
every fixed s and x, fourth-order accurate on the Laplace
transform side.

In the boundary condition (23.b) we need five grid points
to obtain fourth-order accuracy, namely, j= —1,0, 1, 2, 3.
In the condition {23.c}) we derive fourth-order accuracy with
only three grid points involved, namely, j= — 1,0, 1. This is
so because we use the differential equation to construct the
extra boundary condition. From this we learn that using the
differential equation when constructing the extra boundary
condition will reduce the needed number of grid points.

Instead of the problem (20} we now consider the more
realistic problem (4) with U=V =0and v=1, As an exam-
ple, we at x =0 will apply the boundary condition (1) with
r=0 and v;=0. We let u;, v, p; be the numerical
approximation on the grid x,=h-j, j=—1,0, 1, 2, ... We
approximate the x-derivatives with fourth-order finite
differences and take the Laplace-Fourier transform in
time and the y-direction, We let 4, ¢, and p, be the
Laplace-Fourier transforms of u;, v;, and p;. We obtain the
system

2

su;— D, D_ (1—ED+D_) i+ o't

hZ
+D0(1_ED+~D—>JUAJ:O’

f=1,23., w=+1,+2 (24a)
hl
st~ D, D_ (I—ED+D)ﬁj+wzﬁ_,-+iwﬁj—0,
j=1,23,., w=+1, +2 ., (24b)
hz
D,D_ (IED+D_)ﬁ}-—w2ﬁJ=O,
Jj=1,23 ., w==+1, £2, ., (24.c)
L‘I(): gu(w7 S): 60 =0, D_{j)ﬁo + lwﬁ[) = 0,
wo=+1, +2, .., {24d)
[t + 0418 G+ D13
+U1p.Con+iNdE <o, n>n, (24.¢)
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The operator D), that approximates d/éx to the fourth
order in the boundary condition (24.d), can for instance be
defined by D'V, = (—3i_, — 104y + 18, — 61ty + 1,)/124.
Note that we have not yet specified the three extra boundary
conditions needed to eliminate the parasite solution.

The fundamental solution of the system (24.a)-(24.c),
(24.e)is

. m+O(w4h“)
7 w
B |(w,s) =0y —i -y
P i i
w
1 0
Foy, | O] e Vo, |1 |-em mY
0 0
1 + O(w*h?)
iwh
+heay 48172 A
s_h_
48'7
1 0
theo-[Of-e g | 1] e,
0 0
(25.a}
where

2 [/3 3 R\ 12
.'cu—hsmh _(2—2(1— 3) ) :|

= |w| - {1+ O(w*h*)},

2 B 2 2 1725 1/2
oo (2-3 (1 ety

(25.b)

=(s+ )" {1+ 0((s+ w?)* h"}}, (25.¢)
K”=%sinh_1 g(%“L%(l _h?z)uz)m]
=2 sinh =I(3'). {1 + 0w}, (25.4)
o (302252
—26inh 13" (14 0((s + 0} K} (25¢)

h

The first three terms in (25.a) is a fourth-order accurate
approximation of the fundamental solution (6), whereas the
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last three terms is the parasitic solution with the boundary
layer thickness 4.

As in the previous simple model problem we will
investigate how to choose the extra boundary conditions so
that the parasite solution is eliminated. We saw in the
former example that using the differential equation to
construct the extra boundary conditions will reduce the
needed number of grid points. We will follow the same idea
and as extra boundary conditions use

o~ D —u,  +DMp=0, j=0, (26a)
v DT, —o, 4+ p, =0, j=0, (26.b)
DU p;+D™p; =0,  or

DUXp+D0Yps =0,  j=0. (26.c)

The finite difference operators are of order m,; e.g., D%/
approximates 62/dx* to O(h™} and D" approximates 3/0x
to O(h™).

Applying the boundary conditions (24.d), together with
the Laplace—Fourier transform of the extra boundary con-
ditions (26) to the fundamental solution (25) yields for
every fixed w and s a linear system of equations for the o’s.
By letting m; =3, my 22, m; 23, and m, > 2 and omitting
all O(h*) terms in this system, a straightforward calculation
vields the solution

(s/ew® + 1172

31!

T T T N —— . 7.
Fue w (s/w?+ 1)1 -1 P £., (27.a)
9 i(s/w2+1)”2
&yr 0
G (27b)
o 0

(see [2] for details). Taking the O(h*) terms into account
will only perturb the solution (27) with O(h*) terms. If we
substitute the perturbed o's into the fundamental solution
(25), we derive a fourth-order accurate approximation of
the solution (11) with r=0 and 8} =d5=0. Hence, the
method is, for every fixed @ and s, fourth-order accurate on
the Laplace-Fourier transform side if m, =3, m,22,
mi, 2 3, and my = 2,

We have above described the procedure of how to define
the extra boundary conditions so that the parasite solution
is eliminated, As an example, we have investigated the
inflow condition (1) with r=01indetail. Forr=1and r=2
and for the outflow condition (2} the procedure is similar.
We have not proved stability for our fourth-order method
theoretically. However, numerical experiments show that all
the proposed boundary conditions give stable numerical
schemes.
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Numerical Verification of the Fourth-Order Spatial Accuracy

Lemma 6.1 gives a necessary but not sufficient condition
for how to choose the extra boundary conditions such that
the method becomes fourth-arder accurate on the time side.
Therefore the fourth-order accuracy in the space variables
has also been checked numerically for steady state solutions.
This is done by introducing forcing functions in the
equations. Hence, we numerically solve

Uy + L, + Uu_‘. — VU — Vu_v_v + Px= Fl »

Ogx<gL, 0gy<l, 0<r<on, (28.a)
v,+uv_r+uu),—vuxx-vuy}.+p_,.=F2,

O0<x<l, O0gy<l1, O<tr<ow, (28b)
Paxt+ P+ ul+20u,+02=G,

O<sx<L, 0g<y<l, O<r<co. (28.c)

We choose the forcing functions F, F,, and G in such a way
that the steady state solution is

u=sin(2zany) - {sin(Qem(x~ L) +2} + 8. (y— »?), (29.a)

v=% {cos(2mny)—1} - cos(2am{x — L)), {29.b)

p=v 2am-sin(2rnry) - cos(2mm{x — L)), {29.c)
The choice is done by inserting (29) in (28) and calculating
F,, F,, and G analytically. We then implement the so-
derived foreing functions in the program.

At x =0 we apply the inflow boundary conditton {1} with
r=0, where u, and v}, are defined by (29.a), (29.b) for x =0.
At x = L we apply the outflow boundary condition (2) with
j=2, g=1, where p, is defined by (29.¢) for x=L. At
y=0 and at y=1 we apply the solid wail condition
u=v=u_+0v,~0 Hence, the boundary conditions are
compatible with the steady state solution. As initial condi-
tion we use (29). The viscosity used in the tests is v = 0.02.

We run the program to steady state and compare the
numerically calculated solution with (29). In Table I we
show the results for different gridspacing in a low-frequency

TABLEI

Low Frequency Test, m=2,n=2, L=}

NN, fdu| ., Order (vl , Order {14p] o Order
8,10 49 E—1 27E—1 t.1

16, 20 48 E-2 34 30E-2 32 9.9E 2 3.5

24, 30 74 E-3 38 47E--3 3.7 15E-2 39

32,40 18 E—-3 40 1.2E~-3 39 41E-3 4.0

48, 60 3t E—4 41 22E--4 40 TIE—4 4.1

64, 80 117E—4 40 83E~5 39 21E—4 4.1
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TABLE I
High Frequency Test, m=3,n=4, L=}

NN, |dul.,  Order 4o, Order |dpl,  Ouder
24,30 55 E-2 1.86E —2 83 E~2

32,40 139E—2 48 47 E-3 48 21 E—2 48
48,60 1.76E—3 50 98 E-4 42 35FE-3 46
64,80 60 E—4 46 48 E—4 37 157E-3 40

test with m=2, n=2, and L=1{ in(29). In Table! we
have defined the maximum error in w as |du|,=
max, ; |u(i-Ax, j- 4y, co)—u, ;(c0)|, where u(i - Ax, j- Ay, c0)
is defined by the analytic steady state solution (29) and «, ,
is thernumerical steady state solution. The order of accuracy
for u is defined as

Order — log(ldul <o on the actual mesh/ldul oo on the coarsest mesh)

lOg(Ayon the actual mesh /Ayon the ¢coarsest mesh)

For instance, the order of accuracy in « on the (24, 30)-grid
is calculated as

_ 10g(0.0074/0.49) _

order =g (30-710")

3.8

The accuracy for v and p are defined similariy.

In Table 11 we show the results for different gridspacing in
a high-frequency test with m=3, n=4, and L= 1 in (29).
From Table T and I we see that the spatial convergence rate
is approximately four.

6.2. Computational Resulis

In this section we present calculations that show the effect
of different boundary conditions. We will see that the
analytical results of the linear theory in Sections 2-5 hold
true for the non-linear problem as well. That is, the
boundary layers at the infiow are suppressed by as inflow

0 —+ -

1 u(Q,y.t)

FIG. 2. The inflow velocity profile.
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condition prescribing {}) with r large, and at ouiflow by
an outflow condition prescribing (2) with j and ¢ large. The
importance of choosing j=g+1 for large viscosity in
order to obtain the solution divergence frec is illustrated.
Furthermore, the boundary conditions (1) and (2) give
stable solutions of the non-linear problem. .

We will present numerical solutions of the time-depend-
ent, incompressible Navier-Stokes equation (3) in a two-
dimensional straight channel. A rectangular grid was used
in all the calcuiations. We used the same inflow velocity
profile in all the calculations and tested the different bound-
ary conditions derived in Section 5. We also varied the
viscosity v. We did not vary the grid spacing Ax and 4y. The
used inflow velocity profile, u(0, y, t) =uy(y), is shown in
Fig. 2.

The variation in the y-direction was introduced for two
purposes. One was to illustrate the existence of boundary
layers at the inflow boundary. The other was to create a flow
that varied in both the x- and y-directions at the outflow
boundary. Thereby the effect of different boundary condi-
tions, for inflow as well as for outflow, could be studied. We
will especialiy investigate how efficiently different boundary
conditions suppress the boundary layers. As initial
condition we used u{x, y, 0)=wuy(y), v(x, y,0)=0, and
pix, 3, 0)="0. In all the examples we run the program to
steady state and show the so-derived solution.

Inflow

We now present how the inflow condition (1) affects the
solution of the non-linear problem. We show surface plots
of u, u,, u.,vv,, and v.. We compare the results for
r=0, r=1, and r=2. We let u, be the profile shown in
Fig.2 and vp=0. As the outflow condition we use
Howr =0, =p=0 at x=L We will show the resuits for
v =0.005 and for L =1.25.

Figure 3a shows surface plots of v, u,, v, ., v, v,,and v,
for the case when the inflow condition (1) with v, =0 and
r=0 is used. We do not see any boundary layer in wu.
However, u, vanishes at the boundary and attains a value
that is O(1) outside a boundary layer. This means that the
boundary layer part and the interior part of #_ have the
same magnitude. Finally, for u,, we sce a strong boundary
layer (u., attains the value 14 at the boundary). The conclu-
sion is that u, and u,, contain a boundary layer, whereas u
does not.

We now consider v, v, and v, in Figure 3a. Here we see
a boundary layer both in v, v,, and v,,. Note that each
derivative makes the function approximately a factor 15
larger.

All this is in good agreement with the linear theory in
Section 5.1. Indeed, from (14) we see that the strength of the
inflow boundary layer in # and v in the linear case is

(et o, | = [y fen] "t {30.a)
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FIG. 3. Surface plots of u, u,, #,,, v, v, and v, for the steady state solution of the non-linear equation (3). The result for three different inflow
boundary conditions at x =0 are compared. Under each plot the maximum absclute value is given. The inflow is to the left and the outflow is to the
right. L =125, In (3.2} (v =0 at x =0) we see an inflow boundary layer in v, u.,, v, v, and v,.. In (3.b) (v, =0 at x =0) we see an inflow boundary
layerinw, ., v,, and v, In (3¢} (v, =0 at x =0) we see an inflow boundary layer only in g,
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and

lary far, | = les /a0l (30.b)
respectively. For the non-linear case we can make the
rough estimate (o} = max, |u {0, y, 1){/max, (0, y, r}| = 6.
According to Section 4.2 we have that in the inflow case
wp -2, e ™% i the boundary layer part of the fundamental
solution {6) and therefore the boundary layer thickness is
1/iew] = L. This stands in agreement with the thickness seen
in Fig. 3.a.

For U we in the non-linear case make the rough estimate
U Jqu(0, y, 1) dy =~ 0.5. With v = 0.005 we obtain the rough
estimate v ||/ ~ 0.005 - 6/0.5 =~ 0.05 < 1. Furthermore, the
equations for steady state are the same as the Laplace
transformed equations with s =0, By (8.b), with F'=0, we
therefore obtain k, = ve?/U. Letting r =0 in (30) we now
obtain that the strength of the boundary layer in u is

% zilvwl:o.%@l

K
o

4

uw

and that the strength of the boundary layer in v is

0

d} =1

o d

K3

w

v

Hence, according to the hnear theory, no boundary layer
should be seen in u, and the boundary layer part and the
interior part of v should be equaily strong. The w- and
v-plots in Fig. 3a show that this is also the case for the
non-linear problem.

From (6) we sce that taking the x-derivative of v and v
makes the boundary layer part e ~“¥ of the solution a fac-
tor |w| larger, whereas the interior part e ~*?* is multiplied
by #, %~ yw?/U. This means that the boundary layers in u,
and v, are a factor |w|/x, = U/v {w] 3 | stronger than those
in « and v. Hence, the strength of the boundary layer in u,
is

U
v o|

)

a

-

u

and the strength of the boundary layer in v, is

U
v |

rx1~U

2 » 1.
v ol

&y

That is, according to the linear theory, the inflow boundary
layer should be seen both in u, and v,. For u, the boundary
layer part and the interior part should be equally strong.
For v,, the boundary layer part should be dominant. As
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seen in the « - and v -plots in Fig. 3a, this is also the case for
the non-linear problem.

In the same way we from (6) see that taking another
x-derivative of 1 and v makes the boundary layers another
factor |w{/k, = Ufv |w| » | stronger. Hence, in the linear
case, the strength of the boundary layer in u, is

(vi(i)l)z'

and the strength of the boundary layer in ¢, is

U \? Uy
. Y » 1,
() 21~ G)

This- is in good agreement with the non-linear case
presented in Fig 3.a, where the inflow boundary layer is
strong both in «,, and v,,.

In Fig. 3.b we show surface plots of u, «, u,., v, v, and
v, for the case when the inflow condition (1) with p;=0
and =1 is used. Hence, at x =0 we give v, =0 instead of
v=0 as the inflow condition. We sce that we obtain an
inflow boundary layer in u,,, v,, and ¢, but not in , u,,
or ». We also see that u, «,, and u,, have the same order of
magnitude. Furthermore, v and v, have the same order of
magnitude, whereas v, is about a factor 30 larger than vo,.
With the same arguments as when considering Fig. 3a we
see that all this is in good agreement with the linear theory.

In Fig. 3.c we again show surface plots of u, u ., v, v, v,
and v,,, but the calculations are now made with the inflow
condition (1) with v,=0and r=2 (v, =0 at x =0 instead
of t=0 at x=0). We see an infllow boundary layer in v,
but not in «, u,, W, v, Or v,. Again, this is in good
agreement with the linear theory.

The general conclusion from Fig 3 is that the higher
order of the x-derivative of v we set to zero at x =0, the
weaker the inflow boundary layer will be, exactly as
predicted by the linear theory.

After the proof of Theorem 5.1 we point out that using the
boundary condition v, ., =0atx=0,ie,r=31in(1},is bad
in case we have v<1. This is because the solution might
grow, even if 1, does not, [27]. We have numerically solved
the non-linear equation (3), together with this inflow
condition as well. As predicted by linear theory, it turned
out that the non-linear solution grew in time, so that no
steady state solution was obtained. Hence, the only usable
inflow boundary conditions are (1) with =0, 1, or 2.

ol U

T )

»1

Oy

oy

L

QOutflow

We now present how the outflow condition (2) affects the
solution of the non-linear problem. We will compare the
results for five different combinations of f and g, namely,

(ha)=(1,1)(1,2),(2,2),(21), (3, 2).
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FIG. 4. The divergence & =u, + ¢, in the solution of the non-linear equation (3} for different outflow boundary conditions and for different values
of the viscosity, We obtain an outflow boundary layer in the divergence when j#¢ + 1 (Figs. 4.3, b, ¢). The maximum absolute value of the divergence
in this boundary layer is given under each plot in Figs. 4.3, b, c. Note that the cutflow boundary layers become thinner the smaller the viscosity is. Further-
more, the layers are weaker if ., = v, = 0 is used (Fig. 4.c) than if &, = v, = 0 is used (Fig. 4.a). In case j = ¢ + 1 we do not obtain any outflow houndary
layer in the divergence (Figs. 4.d, e). In these plots we see a small divergence at the inflow boundary. Due to automatic scaling in the plot program this
small divergence is seen, even though it is much smaller than the divergence in Figs. 4.a, b, c. The inflow is to the left and the outflow is to the right. L =10.5.
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We let p,=0 and as the inflow condition we use u= u,,
vex =0, and u, + v, = 0 at x = 0. The calculations presented
in Fig. 4 are made with the channel length £ =0.5, and the
calculations presented in Fig. 5 are made with the channel
length £ =1.25.

The linear theory in Section 5.2 shows that the solution of
the linear problem centains outflow boundary layers in u
and ». According to (18) and (8.b) (remember that I/ <0 in
the outflow case}, these layers for v< |U]/|w| are of the
strength

@, w|’ vl
2l == - «1
Ay Ky U

a, wl|? [(veol?
== <|[=| €1,
&y Ki

respectively. Hence, the higher the values of j and g that we
choose 1n the linear case, the weaker the outflow boundary
layers will be. The boundary layer thickness is v/| U]

If j=g+ 1 the solution of the lincar continuous problem
is divergence free. On the other hand, if j # ¢+ 1, the solu-
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tion will contain divergence that is confined to the outflow
boundary layer.

To see how well the conclusions from the linear theory
hold in the non-linear case, we choose to present plots of the
divergence. Figure 4 shows the divergence in the non-linear
case for different outflow boundary conditions and for dif-
ferent values of the viscosity. The viscosity is so large that
the outflow boundary layers are resolved (v = 0.06, v=0.02,
and v=0.01, corresponding to the cell Reynolds number
Re,.=Ax/v=042, 125, and 2.5). We see that only the
solutions plotted in Figs. 4.a, b, ¢, where j# ¢+ 1, contain
an outflow boundary layer in the divergence. The thickness
of this layer is approximately proportional to v.
|6] max = max, , |6] is in Figs. 4a, b, ¢ attained at the outflow
boundary and can therefore be used as a measure of the
strength of the boundary layer. Comparing the values of
18| max In Fig. 4a and Fig. 4¢ yields that the boundary layers
are weaker when u, ., =v,.=p=0 is used as the outflow
condition than when w,=v,.= p=0is used.

In Fig. 5 we show examples of what happens when the
viscosity is so small that the outflow boundary layers are
not resolved. In this case it is important to suppress the out-

>
t’:f~———ﬂ.ﬂjl v=0.005
B alﬁl (Re=5)
ﬁ_____f__%,‘i“
e i
PM;“_“L"‘ v=0.001
e (Re =25)
gw‘nml |hl|
. ’\ iR
:]%%DDJBUU v=0.0005
@‘5 x (Re =50)
Dl
5.a u,= 5b ux=0 5.¢ l.l.“—O 54 uxx_O 5. uxxx=0
v =0 px=L v, =0 px=L v ,=0 px= v,=0 px=L V=0 px=L
p:() p:O =0 p=0 p=0

FIG. 5. The same calculations as in Fig, 4, but now for so small a viscosity that the outflow boundary layer is not resolved. This is so because the
cell Reynolds number Re = 4x/v is large. In this case it is no longer important to have the condition j=¢ + | fulfilled. It is more important to choose
jand g large so that the outflow boundary layers become weak. The only calculations with good results are those shown in Figs. 5¢, e, where both j and
q are at least 2. In Figs. 5.a, b, d, where at least one of j and ¢ equals I, we see wiggles starting at the outflow boundary. The inflow is to the left and

the outflow is to the right. Z =1.25.
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flow boundary layers in u and v, as these layers otherwise
will lead to wiggles. We see that the numerical solution
(ilustrated with the divergence) is well behaving at the out-
flow boundary in Figs. 5.c, ¢, where j22 2 and g = 2. On the
other hand, in Figs. 5a, b, where j= |, for v = 0.00035 and for
v=0.001 we obtain large wiggles, starting at the outflow
boundary. For v=0.0005 the wiggles are strong also in
Fig. 5d, where j= g+ 1 =2. This shows that, when v is so
small that the outflow boundary layers are not resolved, due
to the coarseness of the mesh used, j=¢+ 1 is not a suf-
ficient condition to derive a well-behaving solution. Figure
5.c, where j = ¢ =2 is used with good result, shows that the
condition j=¢ + 1 is not even necessary. Instead we must
choose j and ¢ so large (f=2 and g3 2) that the outflow
boundary layers are properly suppressed.

All the conclusions above are in good agreement with the
linear theory in Section 5.2.

7. SUMMARY

As inflow boundary conditions we suggest

u
o Ho
av, O.v.00=] vy | {p 1), r=0or1lor2
X
0
et v,

If the assumptions in Section 4.2 are fulfilled; i.e., if the
viscosity v is small, there might be boundary layers in the
solution. The larger r we use (i.c., the higher the order of the
x-derivative of v we prescribe), the weaker will this bound-
ary layer be, provided that we let v, = 0. However, for r >3
the solutions can grow in time even if u, and vy do not. We
therefore recommend to use v, = 0 as the inflow boundary
condition.

If the boundary condition u, + v,=0 at x=0 is not
properly fulfilled, that is if we instead give u, + v, =d, #0,
this boundary condition will act as a source of divergence,
This divergence will not be confined to the boundary.
Thetefore, it is very important that the condition u, + v, =0
at x =0 is fulfilled.

Finally, note that complementing the no-slip condition
u=v=0 at x=0 with the condition u,+v,=0 at x=0
yields a special case of the above conditiOn,'namely r=90,
together with ug = vy = 0. Furthermore, complementing the
slip condition u=v,=0 at x=0 with the condition
u.+v,=0at x=0 yields another special case of the above
condition, namely r = 1, together with uy= v} =0.
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As outflow boundary conditions we suggest

'u

AN

v

Fo (0, p, 0= 0 J(y 1)
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P

If v < 1 the solution will contain a boundary layer part that
we want to suppress. This is done by choosing j= 1 and
¢ = 1. The larger j and g we choose, the more suppressed will
the boundary layer be.

In order to make the solution divergence free we must let
J=gq+ 1. However, if v < 1 it is not very important to fulfill
this requirement, as the divergence will in this case be con-
fined to the outflow boundary layer, which we suppress by
choosing j and ¢ large. We recommend to use j=3 and
g = 2. In case the viscosity is small, we can also use j =2 and
g=2.
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